History - Articles - Books

The History of the First Tool Steel

The steel largely recognized as being the “first tool steel” was developed by Robert Forester Mushet, a British metallurgist, in 1868 [1]. Mushet improved the Bessemer steelmaking process through the addition of a small amount of manganese [1]. Later Mushet was experimenting with various additions of elements and discovered that one of his bars of steel had become fully hard despite not being quenched. This was called a “self-hardening” and later “air-hardening” steel because it could be fully hardened in air rather than requiring a water or even oil quench. The reason for the ability to self-harden is due to the property of hardenability, which I have covered in a Bladeforums post [2]. Hardenability is essentially the property of how slowly a steel can be cooled from the hardening temperature while still achieving a hard martensitic microstructure rather than a soft ferrite-cementite microstructure. This steel was high in tungsten and manganese, and it is sometimes erroneously reported that it was the tungsten that gave it the high hardenability; however, it was primarily the manganese that gave it the ability to harden in air, as tungsten adds little to hardenability [3]. read more

Metallurgy Principles, Steel and Knife Properties, Toughness

How Does Grain Refinement Lead to Improved Properties?

Update 6/21/2018: A new journal article has been released on the effect of grain size which is very interesting. I have added a brief summary of it at the bottom of this article.

In my posts on austenitizing I described parameters of heat treating to keep grain size as small as possible and therefore improve strength and toughness [1-3]. It is very difficult to improve both strength and toughness at the same time, usually increasing one decreases the other. By what mechanism does grain refinement improve both? read more

Austenitizing, Heat Treating and Processing

Austenitizing Part 3 – Multi-Step Austenitizing

There are many modifications to a straight high temperature austenitize for a given hold time followed by quenching. I am covering a few of them in this article.

Preheating

Preheating is performed to minimize size change, distortion, and cracking during heat treatment. Often a single preheating is recommended, but for some grades two preheating temperatures are recommended. For example, the Vanadis 4 Extra datasheet recommends a first preheat temperature of 600-650°C and a second of 850-900°C, such as in the following schematic [1]: read more