Steel and Knife Properties, Toughness

How Chipping of Edges Happens at a Microscopic Level

Thanks to Warren Krywko, Joseph Cannell, and Timothy Thomas for becoming Knife Steel Nerds Patreon supporters! Your contributions will help fund more research on knife steels.

To discuss chipping we have to start with fracture mechanics of materials, and in this case steel. Chipping itself is just fracture, so by definition resistance to chipping is controlled by toughness. Unfortunately there are many definitions of toughness. I covered one definition of toughness in the article on spider silk, which is the area underneath the stress-strain curve: read more

Metallurgy Principles, Quenching

What Makes Quenched Steel so Hard?

Update: I have started a Patreon page to fund research projects which you can read about here – http://knifesteelnerds.com/how-you-can-help/

To harden steel you heat it up to high temperature to form a phase called austenite, followed by rapid quenching to make a very strong phase called martensite. Hardness is a measure of strength. I covered the process of austenite formation in the following post: Austenitizing Part 1. To summarize that post: read more

Annealing, Austenitizing, Forging, Heat Treating and Processing, Steel and Knife Properties, Steels, Tempering, Toughness

Cru Forge V – Toughness testing, Processing, and Background

Cru Forge V was developed by Crucible for those who forge their steel for knives [1]. It was developed shortly before Crucible’s bankruptcy and is reported to have been tested with the help of knifemakers Howard Clark and Dan Farr and that the code name prior to its official name was 1086V [2]. The steel is not listed anywhere on Crucible’s website and does not appear to be in production any longer, but as of March 2018 is still available from some third party steel sellers [3][4][5]. The steel has the following composition [1]: read more

Metallurgy Principles, Steel and Knife Properties, Toughness

How Does Grain Refinement Lead to Improved Properties?

Update 6/21/2018: A new journal article has been released on the effect of grain size which is very interesting. I have added a brief summary of it at the bottom of this article.

In my posts on austenitizing I described parameters of heat treating to keep grain size as small as possible and therefore improve strength and toughness [1-3]. It is very difficult to improve both strength and toughness at the same time, usually increasing one decreases the other. By what mechanism does grain refinement improve both? read more