Hardness, Metallurgy Principles, Steel and Knife Properties

Rockwell Hardness is the Megapixels of Knife Steel Specs

Thanks to Michael Drinkwine for becoming a Knife Steel Nerds Patreon supporter!

Hardness and Megapixels

In the early-to-mid 2000’s with digital cameras and somewhat more recently with smartphone cameras we had the battle of megapixels. The number of megapixels is simply the number of pixels that are captured by a digital camera. When we had 0.3 megapixel cameras the pictures were quite blurry and jumping up to 2 or 3 megapixels made a big difference. However, when comparing 5 to 7 megapixels the quality of the image was much more likely to be controlled by the quality of the lens and sensor than simply the number of megapixels. Despite that, megapixels became an easy marketing point because it is a simple number to present to the public. We haven’t seen rockwell hardness climbing for no reason other than marketing, but it is one of the few simple numbers that are used to advertise for a knife. Therefore it is often misunderstood by knife buyers, and yes, even some knife makers. In this article I cover some simple reasons why hardness is not as important as other factors for predicting most steel properties. And then we get into the nitty gritty with why hardness is not always the same as strength and how heat treatment can affect strength independent of hardness. read more

Heat Treating and Processing, History - Articles - Books, Metallurgy Principles, Reviews

Review – Kevin Cashen’s Guide to 1080 & 1084

Thanks to Edward Braun, Mark Reich, and Alex Kaplan for becoming Knife Steel Nerds Patreon supporters!

Misc. updates: I added some toughness numbers that I had previously been unable to track down comparing 440C and 154CM to the 154CM article. I also added a summary of a very interesting new journal article about the effect of grain size on steel toughness to the Grain Refinement article.   read more

Corrosion Resistance, Metallurgy Principles, Steels

How Much More Chromium Does D2 Need to be Stainless?

Thanks to Devon Craun for becoming a Knife Steel Nerds Patreon supporter! Your support is funding knife steel research. 

Some materials like aluminum form a passive oxide layer that prevents further corrosion. Steel is not one of those materials. Instead, steel forms iron oxide, or rust, that doesn’t protect the underlying iron and flakes off leading to further corrosion. However, when sufficient chromium is added then a chromium oxide passive layer forms which protects the steel from corrosion in a similar way to a metal like aluminum with its own aluminum oxide layer. A simple schematic diagram shows the passive film vs rust [1]: read more

Metallurgy Principles, Quenching

What Makes Quenched Steel so Hard?

Update: I have started a Patreon page to fund research projects which you can read about here – http://knifesteelnerds.com/how-you-can-help/

To harden steel you heat it up to high temperature to form a phase called austenite, followed by rapid quenching to make a very strong phase called martensite. Hardness is a measure of strength. I covered the process of austenite formation in the following post: Austenitizing Part 1. To summarize that post: read more

Metallurgy Principles, Steel and Knife Properties, Toughness

How Does Grain Refinement Lead to Improved Properties?

Update 6/21/2018: A new journal article has been released on the effect of grain size which is very interesting. I have added a brief summary of it at the bottom of this article.

In my posts on austenitizing I described parameters of heat treating to keep grain size as small as possible and therefore improve strength and toughness [1-3]. It is very difficult to improve both strength and toughness at the same time, usually increasing one decreases the other. By what mechanism does grain refinement improve both? read more