Author: Larrin
New Micrographs of 42 Knife Steels
10/15/2020: I added M398, WFN, Nitrobe 77, and Vancron
2/24/2020: I added 420HC, CPM-T15, Rex 76, S125V, SPY27, and Z-Max/Rex 86
2/10/2020: I added 26C3, 1.2442, 1.2519, 1.2562, Blue Super, V-Toku 2, and A8 Mod.
How to Pick the Best Steel for Every Knife
Update 2/19/2021: In the recommendations section I updated a few of my recommendations based on new experiments and new steels.
Thanks to Mau, Benjamin Amaral, Karolis Griskevicius, Dan Frazier, and Jess Hoffman for becoming Knife Steel Nerds Patreon supporters! We are now over 100 supporters!
How to Heat Treat 52100
Thanks to Lev Serebryakov for becoming a Knife Steel Nerds Patreon supporter!
52100 Steel
I previously wrote about the history and properties of 52100 in this article. The steel has been around since 1905, has been known as 52100 since 1919, and has been used in knives since at least the 1940’s. It was developed for bearings and its common use in bearings meant it has been a ready source for knife steel for decades. It is known for its fine carbide size and good toughness. The chromium addition compared with the chromium-free 1095 means that it has somewhat higher hardenability so it is easier to harden in oil and obtain full hardness. The chromium also helps keep the carbide size small. The chromium also shifts up the temperatures required for hardening.
New Steel Bohler M398 – The New King of Edge Retention?
Thanks to Michael Poor and Connor Kaspar for becoming Knife Steel Nerds Patreon supporters!
M398 Steel
Edit 11/19/2020: Since the release of this article I have experimentally evaluated M398, which you can read about here.
Which Steels are Easiest (and Most Difficult) to Forge?
Thanks to Richard Airey for becoming a Knife Steel Nerds Patreon supporter!
Forging Steel
Typically forging bladesmiths have restricted their steel selection to low alloy steels like 1095, 1084, 5160, 52100, O1, etc. There are a variety of reasons given for why the bladesmiths usually use these relatively simple steels. Often “ease in heat treatment” is a common one. However, this article will focus on which steels are physically more difficult to deform with the hammer and which crack most readily. What controls “forgeability” or steel?
A2 Steel – History and Properties
Thanks to Dan Pierson, Steve R. Godfrey, Bryan Fry, and Timothy Becker for becoming Knife Steel Nerds Patreon supporters!
History
A2 steel is quite old, though determining the exact year it was released is a bit difficult. A2 steel was developed in the early 20th century during the explosion of tool steels that occurred after the discovery of high speed steel which was first presented in 1900. You can read about that history in this article: The History of the First Tool Steel. During the development of the first high speed steel included the switch from manganese to chromium as the primary hardenability element, and most high speed steels had about 4% Cr. That high chromium content was primarily for “hardenability” which is the degree of cooling required to achieve full hardness. A “water quenching” steel has low hardenability and must be quenched very rapidly from high temperature, and an “air hardening” steel can be left in air and it will fully harden. You can read more about hardenability in this article on quenching. The first high speed steel came to be known as T1, which had 4% Cr and 18% W (tungsten). The earliest record I have found of a precursor A2-type steel is in a summary of tool steels in 1925 [1], while summaries of tool steels from 1910 [2] and 1915 [3] do not have any similar steels. Therefore these types of steels probably arose sometime between 1915 and 1925.
How Stress Risers Lead to Broken Blades
Thanks to Peter Bruno for becoming a Knife Steel Nerds Patreon supporter!
Stress Risers/Concentrations
In an ideal world when a force is applied to a knife, that stress is distributed evenly across the piece. There can be certain features to a design, however, that leads to a stress “concentration” where the stress is locally higher than the rest of the piece. Stress is load divided by cross section, so a very simple way stress is concentrated is by having a locally smaller area of a part.
Does Sharpening with a Grinder Ruin Your Edge?
Update: Michael Drinkwine sent me another report from Global where they reported factory sharpened and waterstone sharpened knives. I added it to the “CATRA Testing” section of the article.
How to Heat Treat 5160 – Optimizing Toughness
Thanks to Lewis, David Abbot, and Nick Shabazz for becoming Knife Steel Nerds Patreon supporters!
5160
5160 is a low alloy steel known for its excellent toughness. It has been used by many forging bladesmiths due to its good properties and also wide availability, especially in the form of leaf springs. However, information on how to maximize the steel’s properties with heat treating is scant. So along with my father, Devin Thomas, we did a small study on the toughness of 5160.
Heat Treating Vanax – How Hard Does it Get?
Thanks to David Suitor, Drakopoulos Stelios, and Maxim Bellehumeur for becoming Knife Steel Nerds Patreon supporters!
Vanax
Vanax is an interesting steel because of its good combination of toughness, wear resistance, and corrosion resistance. I wrote about Vanax along with other nitrogen-alloyed steels in this article, to describe how the steel is designed. While the datasheet shows it being capable of 59-61 Rc, I was curious about how hard the steel can go. The steel may be good for kitchen knives, for example, where very thin edges and high hardness is common. And kitchen knife users may appreciate the excellent corrosion resistance of Vanax in the presence of water, salt, and acidic foods.