Category: History – Articles – Books
1 thought on “History – Articles – Books”
Leave a Reply
VG10 and Super Gold 2 – Takefu Stainless Steel Properties and History
Thanks to Larry Elletson, Tim Sigwarth, Steve Matthes, Curtis Seizert, Kristian Gasparius, and Will Collins for becoming Knife Steel Nerds Patreon supporters! We now have over 150 supporters!
History of VG10
Super Hard (70 Rc) High Speed Steels – Maxamet, Rex 121, and More Explained
Thanks to Roberto J. Rodriguez and J. Kelley for becoming Knife Steel Nerds Patreon supporters! We only need a few more for 150 supporters!
Super Hard High Speed Steels
The super hard high speed steels (>68 Rc or so) are interesting from the standpoint of knife enthusiasts and knifemakers, particularly since knives are so often produced in the 58-61 Rc range. The metallurgy of these types of steels is also interesting. But before we get to what exactly these steels are and how they work, it makes sense to look at what led to their development first.
Crucible S45VN Steel – Everything You Need to Know
Thanks to John Dyess, Michael Foote, Xun Fan, and Mark Vanderwest for becoming Knife Steel Nerds Patreon supporters!
Thanks to Niagara Specialty Metals for getting me a bar of S45VN for the experiments necessary for this article.
O1 Steel – History, Properties, and How to Heat Treat
Thanks to Johnny Ngo and ALtheSciencePal for becoming Knife Steel Nerds Patreon supporters!
O1 Steel History
O1 steel was developed in 1905 by Halcomb steel which was acquired by Crucible Steel a few years later [1][2]. However, the history is a bit more interesting than that. In 1876 a large Sheffield steel company, Sanderson Brothers, purchased Sweet’s Manufacturing Company’s Geddes Steel Works in Syracuse New York. American tariffs had led to a large reduction in exported steel from Sheffield, and steel output from the USA had also greatly increased to match. So several English steel companies setup production facilities in the US, including Sanderson Brothers. Sanderson Brothers was a very old Sheffield steel company, founded in 1776. Tool Steel development began to explode starting in about 1900 due to the recent discovery of “high speed steel” which you can read about here: The History of the First Tool Steel. The year 1900 was doubly significant because in that year there was a major consolidation of 13 of the major steel plants which used “crucible” steel production methods, accounting for 95% of the crucible steel production in the United States.
How to Heat Treat 26C3 Steel
Thanks to Gene Boyd and Dan Bidinger for becoming Knife Steel Nerds Patreon supporters!
26C3 Steel
26C3 steel is produced by Uddeholmstrip (part of Voestalpine Precision Strip) as a razor and scalpel steel. This steel is also known as 1.2002 using the German designation. I don’t know much about the history of the steel but the marketing literature says, “voestalpine Precision Strip AB has long experience and were the pioneers of both the high carbon (UHB 26C3) and the martensitic stainless steel (UHB AEB-L) razor strip grades” [1]. In the 1927 patent for AEB-H [2], reference is made to “the purest Swedish carbon steel with ‘1.05% C and 0.4% Mn'” and in a 1970 patent for a razor blade steel there is a reference to UHB 26C (the 3 is not on the end) which has the same approximate composition as the current 26C3 [3]. So I think there was probably some evolution of the composition despite the claims of the marketing material. The composition of 26C3 is shown below:
XHP Steel – History and Properties
Thanks to John Bates, Kenny Lazarus, Robert Abel, and Matt Danielson for becoming Knife Steel Nerds Patreon supporters! I have some exclusive Patreon supporter content this week. Pete of the Cedric and Ada Youtube channel posted this past week a video summarizing his rope cut tests on 14 Spyderco Mule knives in different steels. This is a fun test because all of the knives are nearly identical and only the steel and heat treatment is different, so it is a better steel comparison than some of the others between different knives. I already have a previous article where I compared CATRA testing to rope cutting so this new test didn’t warrant a whole new article, but I offered an analysis of his test for Patreon.
The Secret Heat Treatment of Frank J. Richtig
Thanks to Dean Baughman, Kitoc420, Steve Callari, Jay Ghoo, and Mitch Cagile for becoming Knife Steel Nerds Patreon supporters!
Legendary Heat Treatments
Last week I wrote about What a Good Heat Treatment Can and Cannot Do, and as part of that topic I wrote about how some knifemakers have a legendary or even mythical reputation for their heat treatments. In that article I argued that the big differences are between “bad” and “good” heat treatments, and that the differences between various good heat treatments are much smaller. And that edge geometry and knife design are more important to knife performance than the differences that are possible between different “good” heat treatments. So I think it makes sense to discuss a particular case of a knifemaker known for legendary, unmatched heat treatments, which brings me to…
H1 Steel – How it Works
Thanks to Guns N’ Loaded for becoming a Knife Steel Nerds Patreon supporter!
Austenitic Stainless Steels
At its most basic, H1 is an austenitic stainless steel. Austenitic stainless steels are about as old as stainless steel itself, being developed by German metallurgists in the approximate time period of 1909-1912. They worked on 18% Cr, 8% Ni steels which are quite similar to common austenitic stainless steels like 301, 302, and 304.
The History of 3V, Cru-Wear, and Z-Tuff Steel
Thanks to Patrick Gosselin for becoming a Knife Steel Nerds Patreon supporter!
Thanks to Kenneth Pinnow for talking to me about 3V steel development, Gary Maddock for talking to me about PD#1, CD#1, PD#5, Z-Wear, and Z-Tuff, and Mark Zalesky and Clay Aalders for getting me a scan of a 1979 Knife World article about Vasco Wear.
A2 Steel – History and Properties
Thanks to Dan Pierson, Steve R. Godfrey, Bryan Fry, and Timothy Becker for becoming Knife Steel Nerds Patreon supporters!
History
A2 steel is quite old, though determining the exact year it was released is a bit difficult. A2 steel was developed in the early 20th century during the explosion of tool steels that occurred after the discovery of high speed steel which was first presented in 1900. You can read about that history in this article: The History of the First Tool Steel. During the development of the first high speed steel included the switch from manganese to chromium as the primary hardenability element, and most high speed steels had about 4% Cr. That high chromium content was primarily for “hardenability” which is the degree of cooling required to achieve full hardness. A “water quenching” steel has low hardenability and must be quenched very rapidly from high temperature, and an “air hardening” steel can be left in air and it will fully harden. You can read more about hardenability in this article on quenching. The first high speed steel came to be known as T1, which had 4% Cr and 18% W (tungsten). The earliest record I have found of a precursor A2-type steel is in a summary of tool steels in 1925 [1], while summaries of tool steels from 1910 [2] and 1915 [3] do not have any similar steels. Therefore these types of steels probably arose sometime between 1915 and 1925.
Andre Grobler posted the link to your blog on FB. Will check it out