Hardenability, Quenching

How Fast Do You Have to Quench? Hardenability of Steel

Thanks to Richard Patterson, Patrick Guignot, Aaron Lee, and David Richardson for becoming Knife Steel Nerds Patreon supporters!

Hardenability

How fast one must quench steel is controlled by its hardenability. Hardenability is not a measure of how hard a steel can get. Instead it is a measure of how fast you have to quench to achieve max hardness for a given composition. Therefore a steel with 0.2% carbon can have high hardenability without being able to reach a particularly high hardness; the steel can be allowed to cool in air and achieve more or less the same hardness as when it is quenched in water. On the other hand, a steel with very high carbon content that can reach very high hardness can have low hardenability, requiring a water quench to achieve its potential hardness. read more

Edge Retention, Steel and Knife Properties

Can CATRA predict Rope Cutting Performance?

Thanks to Fingal Ferguson for becoming a Knife Steel Nerds Patreon supporter!

CATRA Edge Retention Testing

I previously wrote articles about CATRA testing of edges. The CATRA test uses 5% silica-impregnated cardstock which it slices with a fixed stroke length and force. The first article primarily looked at the effect of edge angle on edge retention; specifically, that edge angle greatly controls edge retention: read more

Corrosion Resistance, Edge Retention, Sharpness

Does Acidic Food Affect Edge Retention?

Thanks to Bill Wine for becoming a Knife Steel Nerds Patreon supporter!

I was interviewed on the Knife Junkie Podcast, so make sure you check that out.

Acidic Food

Carbon steel knives are frequently used in kitchens, probably the majority of them made by Japanese bladesmiths and knife companies. Kitchen knives cut a variety of foods, and some of them are corrosive. There has been some debate about whether any of these potentially-corrosive foods can actually affect sharpness or edge retention of kitchen knives. Sharpness is controlled by the radius/width of the edge. You can read more in the article on sharpness vs cutting ability. read more

Steel and Knife Properties, Toughness

Why Cold Steel Is Brittle

Thanks to Tracy Mickley from becoming a Knife Steel Nerds Patreon supporter!

Effect of Temperature on Strength

Steels become stronger at lower temperatures. This can be measured with the “yield strength” which is the load to permanently deform the steel. This deformation is in the form of a shape change, ie. if you are bending steel it stays bent, when hammering hot steel it dents, when flexing an edge it rolls. This is perhaps easier to visualize for those that have forged steel because hot steel is easier to forge, and is progressively more difficult to forge as it cools down. This increase in strength at lower temperatures continues below room temperature, so steel at cryogenic temperatures is stronger than at room temperature. Here are values for yield stress for 410 stainless steel heat treated to 39 Rc [1]: read more

Cryo, Edge Retention

Cryogenic Processing of Steel Part 3 – Wear Resistance and Edge Retention

Thanks to Ian Rogers for becoming a Knife Steel Nerds Patreon supporter!

Intro to Cryo and Wear Resistance

In Cryogenic Processing Part 1 I covered the effects of cryo on retained austenite and hardness. In Cryogenic Processing Part 2 I looked at the studies on cryo and toughness. Wear resistance is the most controversial aspect of cryogenic processing of steel. In particular there are claims that the use of cryogenic processing (liquid nitrogen) leads to an improvement in wear resistance that is not found with subzero processing (dry ice). Sometimes it is claimed that cryo can lead to massive increases in wear resistance [1]: read more

Cryo, Tempering, Toughness

Cryogenic Processing of Steel Part 2 – Toughness and Strength

Thanks to Gator, Russell Dodd, and Matt de Clercq for becoming Knife Steel Nerds Patreon supporters!

Introduction

Part 1 of the Cryogenic Processing series covered the transformation of retained austenite to martensite and the increase in hardness that occurs. That is the least controversial aspect of cryogenic processing of steel. The other two primary properties of steel affected by cryo processing are toughness and wear resistance. Both of these properties can be difficult to pin down as they have high variability. Tool steels are known for their relatively poor toughness which means we are often comparing small numbers.

Detour – Tempering

One important interrelation to keep in mind with subzero and cryo studies is the transformation of retained austenite in tempering. With sufficiently high tempering temperatures all/most of the retained austenite is transformed without any cold treatment. This depends on the alloy content, as low-alloy 52100 will have lost its retained austenite with a 500-600°F temper while high alloy steels need over 900°F. You can read more in the article on tempering. With high alloy steels the loss of retained austenite also coincides with “secondary hardening” which is a high temperature tempering treatment that increases hardness [1]:

Above is a tempering chart for Caldie steel (0.7C-5.0Cr-2.3Mo) which shows both hardness vs hardening temperature and also retained austenite. You can see that at low tempering temperatures (<400°C) the retained austenite is basically constant. You can also see that the hardness decreases with higher tempering temperatures up to about 350°C and then it increases to a peak at around 520°C (950°F). Therefore tempering in the secondary hardening region above 400°C can lead to both high hardness and also the elimination of retained austenite.

Subzero or cryo processing prior to tempering also shifts the tempering-hardness curve to lower temperatures when using the secondary hardening range of tempering [2]:

This means that in general, a lower tempering temperature is required to achieve the same hardness level with secondary hardening. Using the same tempering temperature as without a subzero treatment will lead to a greater degree of tempering. More tempering can be good or bad depending on the situation. Excessive tempering can lead to coarsening of tempering carbides which can reduce toughness. However, if the tempering was insufficient without subzero, the use of subzero processing may increase toughness due to shifting the “optimal toughness” range.

Toughness

In an earlier article where we tested the effects of heat treatment on Z-Wear toughness read more

Cryo, Hardness, Heat Treating and Processing

Cryogenic Processing of Steel Part 1 – Maximizing Hardness

Thanks to Hiroaki Misono and Robert Venable for becoming Knife Steel Nerds Patreon supporters!

Heat Treating and Austenitizing

During heat treatment of steel, the steel is heated to a high temperature called the “austenitizing” temperature where a phase called austenite is formed. Steel has different phases which refer to different arrangements of iron atoms within the steel. Austenite has a different set of properties from the typical room temperature phase of steel. One example of the different properties of austenite is that it is non-magnetic unlike the room temperature ferrite or martensite.

Room temperature iron/steel – Ferrite – Body Centered Cubic Atom Arrangement

High temperature iron/steel – Austenite – Face Centered Cubic Atom Arrangement

After holding the steel at the high austenitizing temperature, the steel is then rapidly quenched which transforms the steel to a phase called martensite which has high hardness. It gains its high hardness because carbon is trapped in between the atoms which makes the room temperature phase martensite as opposed to the soft ferrite.

Normal soft room temperature ferrite on the left and hard martensite on the right read more